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In this feature article, we present a short review on the recent development in the construction of
structurally perfect red and blue light-emitting materials and highlight such research in our group. We
focus mainly on the three-dimensional conjugated structures such as dendrimers, hyperbranched
polymers, star polymers, spirobifluorene-based polymers, and spiro-bridged ladder-type oligomers and
polymers. Results indicated three-dimensional conjugated structures can efficiently decrease the
aggregation of materials, resulting in the improving of the light-emitting efficiency.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Organic and polymeric light-emitting materials have attracted
considerable scientific and industrial attention due to their
potential application in large area flat-panel displays [1]. For full-
color displays three primary colors, i.e., blue, green and red light-
emitting materials are required. Although great success has been
achieved in the development of green light emitters, red and blue
light emitters, which fully meet the requirements for commercial
application are limited [2].

Over the past decade, polyfluorenes (PFO) have emerged as
leading electroluminescent materials with bright blue emission,
high hole mobility, and easily tunable properties through modifi-
cations and copolymerizations [3e8]. However, an additional green
emission and reduced efficiency were observed during operation or
annealing the film in air as shown in Fig. 1. There are some different
opinions about the origin of this green emission band. For example,
such green emission band was once considered to be the emission
from the aggregates or excimers in the bulk materials. Chen et al.
have also reported that the electric field induction and polar end
All rights reserved.
group-enhanced aggregation may be the factors for the presence of
green emission [9]. Recently, more andmore researchers attributed
this low energy green emission to the on-chain ketonic defects
[10e15]. In solid film, the ketonic defects are low energy trap-sites
to which the exited energy can be transferred very efficiently and
can completely change the film emission spectra of polymers [16].
To date, these opinions about the origin of this green emission are
still under intense debate.

Thus, a challenging goal for researchers is to produce blue light-
emitting materials with long-term stability and high efficiency and
that are free of blue-green emission. To obtain pure and stable blue
light emission, various strategies have been used to reduce the
formation of aggregation or ketonic defects for polyfluorenes,
including the introduction of bulky side chains [17], spirobifluorene
structure [18], cross-linked structure [19], hyperbranched struc-
ture, star-like structure [20], and so forth. In most cases, three-
dimensional structures can effectively suppress the aggregation of
conjugated polymer chains, and thus in some extent block the
energy transfer from the polymer backbone to the low energy
ketonic defect site, which is helpful to sustain the original blue
emission.

Meanwhile, for the red-emitting materials, the relatively low
efficiency is the main bottle-neck in the development of red-
emitting materials. The nature of red fluorescent materials with
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Fig. 1. The green emission of PFO is generated after annealing the film in air.
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long enough wavelength (emission maximum wavelength
lmax>610nm) areusuallypolar, suchas electrondonor-substituted
pyran-containing compounds, or nonpolar but extensively
p-conjugated, such as polycyclic aromatic hydrocarbon, perylene
derivatives [21e28] or porphyrin-typemacrocyclic compounds. All
these redfluorophores areprone to aggregation in solid state, due to
either attractive dipoleedipole interactions or effective intermo-
lecular p-stacking. Therefore, they are highly susceptible to
concentration quenching and become either weakly emissive or
even not emissive at all in solid state. The guest-host doped emitter
system becomes another method for solving the above problem of
these red emissive materials when applied for organic light-emit-
ting diodes (OLEDs). However, OLEDs based on dopant are more
difficult to adapt formass productionprocesses than those based on
a nondoped host emitter, considering that reproducibility of the
optimum doping level requires careful manufacturing control [29].
Although Müllen et al. had carried a lot of significant research of
introducing branching units into the perylene bay position to
increase its light-emitting efficiency [21e23], efficient red light-
emitting materials are still highly needed.

In recent years, conjugated polymers have attracted consider-
able scientific and industrial attention due to their applications in
the fields of OLEDs [1,30e32]. However, conjugated polymers often
possess of rod-like and rigid structures. These rigid rod-like
R
N

NH N

HN
C8H17 C8H17

C8H17 C8H17

C8H17

C8H17

C8H17

C8H17

R

R

R

R

nn

n

n

P1: n = 1, R = H
P2: n = 2, R = H
P3: n = 3, R = H
P4: n = 4, R = H
P5: n = 1, R = Br
P6: n = 2, R = I

Fig. 2. Structures of the star-shaped porphyrins P1
polymers are prone to aggregate which usually lead to fluorescence
quenching resulting in lower quantum efficiency. These intrinsic
shortcomings stimulate researchers a deep insight into the effects
of chemical structures based on polymers as light-emitting
materials.

Indeed, the structural perfection of the polymers is very crucial
for the application of organic and polymer-based light-emitting
materials. Fortunately, the unusual electronic and photophysical
properties of the tree-like three-dimensional branched structures
have attained growing attention. These three-dimensional conju-
gatedmacromolecules such as dendrimers, hyperbranched and star
polymers possess themselves of rigid three-dimensional structures,
which can effectively suppress the aggregation of polymer chains.
Polymers with rigid three-dimensional structures have shown
obvious superiority to the corresponding linear structures as light-
emitting materials [33,34].

Over the past several years, our considerable effort has been
expended to attain novel three-dimensional conjugated polymers
or oligomers from design and synthesis points towards improving
the efficiency of blue and red light-emitting materials. In the
present feature article, we discussed recent related studies, gave
some examples in this field, and highlighted such researches in our
group. Our strategies mainly focused on designing three-dimen-
sional conjugated structures to reduce the ketonic defect (for blue
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Fig. 3. (a) The normalized photoluminescence spectra of spin-coated thin films of star-shaped porphyrins P1eP4 and TPP from Ref. [37]. (b) The normalized photoluminescence
spectra of P7 (FxP) and P8 (TPA-FxP) in films from Ref. [38].
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light-emitting materials) and the aggregation (for blue and red
light-emitting materials) of polymers or oligomers with the aim to
improve their photoluminescence or electroluminescence effi-
ciency. Designed three-dimensional polymers or oligomers in our
group mainly include star polymers or oligomers, dendrimers,
hyperbranched and spirobifluorene-based polymers, and spiro-
bridged ladder-type oligomers or polymers. Therefore, this feature
article is organized in the followingway. Section 2 describes the red
and blue emitting materials base on the star-shaped structures.
Section 3 discusses the studies on the dendrimers as red and blue
light-emitting materials. Section 4 introduces hyperbranched
polymers as red and blue light-emitting materials. Section 5
describes the recent research on spirobifluorene and spiro-
bridged ladder-type polymers or oligomers as blue light-emitting
materials.
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Fig. 4. Electroluminescence spectra of PLEDs based on P7 (FxP), P8 (TPA-FxP) and TPP/
PFO from Ref. [38].
2. Star-shaped macromolecular architecture based light-
emitting materials

As classical definition, star polymers are branched polymers
comprising one central core and several linear chains emanating
from the core [35]. In the past decade, conjugated molecules with
star-shaped structures have gained growing interest [36]. Combi-
nation with conjugated character within the arms, a star-shaped
architecture would bring new electrical, optical, and morphological
properties [36]. Especially, star-shaped oligomers or polymers as
light-emitting materials have become very appealing as their
branched structures may effectively suppress aggregation.

As known, porphyrins are also planar macrocycles that exhibit
saturated red color chromaticity, reasonable fluorescence effi-
ciency, and good thermal stability. While, they are prone to
aggregation in solid state due to the intermolecular pep stacking.
With the combination of the advantages of porphyrin and the
properties of star structures, we synthesized a series of mono-
disperse, well-defined star-shaped porphyrins with four oligo-
fluorene arms at their meso positions [37]. The chemical structures
of the four-arm oligofluorene porphyrins P1eP6 are shown in
Fig. 2. The key reactions involved in the synthesis were “Lindsey
condensation” for porphyrin synthesis and Pd-mediated Suzuki-
Miyaura cross-coupling (SMCC) reactions for the attachment of the
oligofluorene arms. The idea in this work was to bond the
porphyrin guest and the polyfluorene host with conjugated
chemical connection, which would lead to through-bond energy
transfer. Furthermore, the side octyl chains on the fluorene units
can efficiently suppress the aggregation of porphyrin rings and
provide good solubility for wholemolecules. Star-shaped oligomers
showed blue absorption, but emitted in red region due to efficient
energy transfer. As shown in Fig. 3a, the emission spectra of spin-
coated films of P1eP4 exhibited an intense red emission peak at
around 658 nm and a shoulder at 715 nm, while tetraphenylpor-
phyrin (TPP) showed two relatively weak emission peaks at around
660 and 720 nm. The photoluminescence quantum yields (F) of
P1eP4 in toluene ranged from 0.16 (for P1) to 0.22 (for P4) in
comparison to TPP (F ¼ 0.11) as the reference standard.

Based on these results, we further developed an easy one-pot
approach to prepare porphyrin-cored star polymers on the gram
scales with a reasonable and economical cost (the detailed
synthesis routes were shown in Ref. [38]) [38]. Such efficient
synthesis can overcome shortcomings of the time-consuming
preparation process of monodisperse star-shaped molecules. As
shown in Fig. 2, bromo endgroups were blocked by fluorene and
triphenylamine (TPA) functional groups to afford star polymers P7
(FxP) and P8 (TPA-FxP), which exhibited good solubility in common
organic solvents, good film-forming ability, and pure saturated red
light emission as shown in Fig. 3b. The photoluminescence
quantum yields were 0.17 for both P7 and P8 in dilute toluene
solutionwith TPP (F¼ 0.11) as the reference standard (irradiated at
423 nm). A single-layer polymer light-emitting diodes (PLED)
device with the configuration of ITO/PEDOT:PSS/P7 or P8 or TPP/
PFO/Al are shown in Fig. 4. The PLEDs of P7 (or P8) showed only
a deep red emission at about 662 nm (663 nm for P8) and
a shoulder at 726 nm (727 nm for P8), which indicated an efficient
energy transfer from oligofluorene arms to porphyrin core. The
doped devices emitted pure red light only when the TPP
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concentration was higher than 6 wt.%, while at this concentration
the TPP had already aggregated seriously and self-quenching of
their fluorescence occurred, which lead to a dramatic decrease in
their fluorescence quantum yields. Such results indicated that
porphyrin-cored star polymers can be used as potential efficient
nondoped red light-emitting materials.

He and coworkers have reported the first blue light-emitting
tetrahedral glass-forming molecules (P9eP13) derived from fluo-
rene and several tetrahedral core compounds as shown in Fig. 5
[39]. The tetrahedral compounds emitted blue light highly effi-
ciently in both solution and solid state. In a continuation of such
research on tetrahedral luminescent materials, they synthesized
polymers P14eP17 by either Suzuki-Miyaura-Schlüter or Grignard
polycondensation reactions [40]. Polymers P14eP17 emitted from
blue to red light in the solid state. Their absorption and emission
maxima were red-shifted with the increase of conjugation length.
Polymer 15 emitted blue light highly efficiently in both solution and
solid state.
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Shirota et al. [41,42] have shown that different cores can be used
to design star-shaped oligotriarylamines to afford extended
conjugation and low oxidation potential compounds. Detailed
reviews of such research work on star-shaped molecules have been
developed by Shirota et al. and Thelakkat et al. [41e43]. Recently,
Ding and his coworkers have synthesized and characterized four
monodisperse starburst oligomers bearing a 4,40,400-tris(carbazol-
9-yl)-triphenylamine core and six oligofluorene arms (P18eP21)
[44] as shown in Fig. 6. The lengths of oligofluorene arms vary from
one to four fluorene units. All of the starburst oligomers have good
film-forming capabilities and display bright, deep-blue fluores-
cence both in solution and in the solid state. The photo-
luminescence quantum efficiencies (F) of the films were measured
using an integration sphere, which were 0.27, 0.67, 0.81, and 0.88
for P18, P19, P20, and P21, respectively. The F values for P20 and
P21 are even higher than those reported for linear polyfluorenes
[45]. Deep-blue OLED devices were successfully fabricated using
these oligomers as emitters and hole-transporting materials. The
presence of the 4,40,400-tris (carbazol-9-yl)-triphenylamine core
was found to be crucial for the hole-transporting process.

In our work, triphenylamine (TPA) and fluorene-based three-
and four-arm star polymers were successfully prepared by the
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Suzuki-Miyaura-Schlüter polycondensation (SPC) of multifunc-
tional cores and AB-type monomers [46]. As shown in Fig. 7, star
polymers (P22-P25) possess of moderate molecular weight and
mono-model molecular weight distribution.

It was well known that fullerenes are fascinatingmolecules with
Ih symmetry. Thus, three-dimensional architectures can be afforded
by the functionalization of fullerenes using multiple addition
reactions [47e50]. In our work, the C60-cored star polyfluorenes
P26eP27 were prepared by Suzuki-Miyaura-Schlüter poly-
condensation (SPC) of the hexakisadduct core with 2-bromo-
9,9-dioctylfluorenyl-4,4,5,5-tetramethyl-[1,3,2]-dioxaborane [51].
Chemical structures are shown in Fig. 8. The modification of the
peripheral bromo endgroups of hexakisadducts (P26) with Suzuki-
Miyaura-Schlüter polycondensation afforded the C60-cored star
polyfluorenes (P27). The emission spectrum of the C60-cored star
polyfluorene P27 is similar to that of PFO with an emission
maximum at 414 nm and shoulder at 435 nm. The film emission
spectra of C60-cored star polyfluorene P27 and PFO before and
after annealing at 200 �C for 0.5 h are shown in Fig. 9. Although low
energy green emission band at around 525 nm in the control
experiment for PFO already became very pronounced, no evident
change was found for the emission spectrum of P27. As expected,
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the three-dimensional structure can effectively reduce the aggre-
gation of the polyfluorene chains and the detrimental green
emission is suppressed.

Three-arm benzene-cored, six-arm truxene-, triazatruxene- and
isotruxene-cored star oligofluorenes have been prepared and their
optical properties have been investigated [52]. For example, Wang
and coworkers [53] have synthesized and characterized four novel
star-shaped blue luminescent compounds based on di-2-pyr-
idylamino derivatives of 1,3,5-triazine (P30eP31) and 1,3,5-
trisubstituted benzene (P28eP29) as shown in Fig. 10. Their
research indicated that these four compounds were bright photo-
luminescent blue emitters. Pei and his coworkers have also pre-
sented convenient and efficient approaches to synthesize soluble
star-shaped C3-symmetric 1,3,5-tri(oligofluorenyl)-benzene deriv-
atives (P32eP35) [54] and oligothiophene-functionalized poly-
cyclic aromatics based on truxene (P36eP39) [55].

Perepichka et al. have presented a facile approach to synthesize
highly luminescent soluble monodisperse star-shaped oligo-
fluorenes with a truxene central core (P40eP43) [56]. These star-
shaped macromolecules P40eP43 showed very efficient blue
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Yang et al. have developed the first isotrxuene-based star-sha-
ped system with an isotruxene core and three fluorene arms (P44).
P44 displays promising light-emitting properties and thermo
stabilities [57]. Huang and his coworkers have described an effective
strategy to achieve highly efficient pure blue electroluminescence
(EL) via a novel series of six-arm monodisperse macromolecules
based on the triazatruxene and fluorene units (P45eP47) [58,59].
Moreover, they have also synthesized and characterized a series of
starburst materials (P48eP50) based on a pyrene core with four
oligofluorene arms of different length [60]. The single-layered
device made of P50 showed a max brightness of over 2700 cd/m2

and a max current efficiency of 1.75 cd/A. These preliminary
findings show that these starburst materials are promising light-
emitting materials.

Recently, we have reported the synthesis of six-arm benzene-
cored oligofluorenes [61]. We employed divergent/convergent
strategy [62], which start from the repetitive divergent synthesis of
symmetrical ethynyl bridged oligofluorenes to the convergent Co-
catalyzed alkyne cyclotrimerization. The structures of polymers
(P51eP53) were shown in Fig. 11. These highly substituted star-
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shaped oligomers exhibit extremely high fluorescent quantum
yields in solution and good thermal and color stabilities in the solid
state. The photoluminescence quantum yields (F) of star oligo-
fluorenes P51, P52, and P53 in dilute THF solution were measured
to be 0.95, 0.95, and 0.96, respectively, using 9,10-diphenylan-
thrancene as the reference standard (0.90 in THF). Furthermore, no
evident change was found for the emission spectrum of P53 after
annealing at 200 �C in air for 2 h as shown in Fig. 12.

More recently, Li et al. have designed and synthesized three
novel zinc tetraphenylporphyrin (ZnTPP)-fluorene copolymers P54,
P55 and P56 [63], with different ZnTPP content based on a facile
one-pot Suzuki polycondensation reaction as shown in Fig. 13. The
EL devices of P54, P55 and P56 displayed much lower turn-on
voltages and higher luminance than those of the devices based on
TPP/PFO. The maximal luminance and current efficiency are 740,
1040, and 2320 cd/m2 and 0.06, 0.23, and 0.45 cd/A for P54, P55,
and P56, respectively. P54 as emitting material showed pure red
emission (CIE coordinates of x ¼ 0.64, y ¼ 0.30) with a narrow
fwhm (28 nm) of the EL peak and a luminance of 740 cd/m2 at
a driving voltage of 17.4 V.

3. Dendronized polymers based light-emitting materials

Dendronized polymers are dendrimers with a central linear
polymeric core and have attracted considerable scientific attention
due to their unique structures and properties since the mid-1980s
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[64]. Different parts of dendrimers can be selectively functionalized
to give the desired optoelectronic and processing properties.
Dendronized polymers with a conjugated polymer backbone are of
special interest due to their potential applications as “nanowires”
and light-emitting materials. Many conjugated linear polymers
were used as backbones of dendronized polymers, including
poly(p-phenylene)s [64,65], poly(p-phenylene-vinylene)s [66],
poly(p-phenylene-ethynylene)s [67], poly(triacetylene)s [68], poly
(acetylene)s [69], poly(thiophene)s [70,71], binaphthyl-based poly
(arylene)s [72], and poly(fluorene)s [73].
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Fig. 16. UVevis absorption and PL spectra (excited at 388 nm) of dendronized poly-
mers P65eP67 in THF from Ref. [82].
There are a number of potential advantages for dendronized
polymers over conjugated polymers and small molecular as light-
emitting materials. First, they possess a rod-like, cylindrical shape
with the polymer backbone encapsulated into the dendritic enve-
lope. The “site isolation” effect of dendritic wedges can prevent the
conjugated backbone from doing cross-talk [74,75]. Second, solu-
bility and especially, optical properties of the molecules can be
adjusted by selecting the appropriate surface functional groups. For
example, Jiang, Aida, and other research groups have shown that
the luminescent activity of the conjugated backbone can be
significantly enhanced with the increasing of the generation [76].
Meanwhile, the solubility of the dendrimers opens the way for
simple processing required for flat-panel displays. Finally, inter-
molecular interactions of chromophores can be controlled by the
type and generation of dendrons employed.

It was very worthwhile to mention that the syntheses of many
kinds of dendronized polymers have been well documented by
Schlüter et al. in two recent reviews [77]. In our work, we paid
particular attention to the macromonomer route because it can
accomplish dendronized polymers carrying structurally perfect
Table 1
The molecular weights, thermal properties, and the photoluminescence quantum
yield of P65eP67 in THF and as films measured with 9,10-diphenylanthracene as
a reference standard (toluene, F ¼ 0.9) from Ref. [82].

Polymer Mn (g/mol) Pn Mw (g/mol) Pw Mw/Mn Tg (�C) FF in solution FF films

P65 46700 47 104,000 104 2.21 103 0.93 0.29
P66 131,000 78 157,000 93 1.20 73 0.96 0.55
P67 143,000 47 171,000 60 1.19 73 0.86 0.64
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dendrons. Recently, Burn and Samuel have also made a significant
review about how the structure of the light-emitting dendrimers
controls key features such as intermolecular interactions and
charge transport, which are important for all OLED materials. In
their review, advantages of the dendrimer architecture for phos-
phorescent emitters, the way about how to change the structure to
enhance material performance, and device design have been well
described [78].

Müllen et al. have prepared polyfluorene P57 with bulky poly-
phenylene dendrimer substituent as shown in Fig. 14 [79], which
can suppress formation of long wavelength emitting aggregates.
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Absorption, emission spectra and molecular modeling confirm that
the bulky dendrimer side chains do not cause extra torsion
between the fluorene units and give P57 with pure blue emission.
Fujiki group reported an asymmetrically substituted polyfluorene
(P58) bearing a bulky poly (benzyl ether) dendron and a less bulky
3,6-dioxaoctyl group in the C-9 position. The research results
showed that this polymer can give a pure blue photoluminescence
with negligible excimer emission around 520 nm [80]. Shu et al.
have synthesized dendronized polymers consisting of a conjugated
polyfluorene backbone appended with different generations of
poly (benzyl ether) dendritic wedges (P59, P60, P61) [73].
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Photophysical studies revealed that the size of the dendrimer side
chain has a significant influence on the luminescence activity of the
dendronized polymers. The large framework of higher generation
dendrons, such as P61, not only prevents self-quenching, but also
suppresses aggregate/excimer formation, leading to an enhance-
ment in photoluminescence (PL) efficiency and luminescent
stability. Carter and his coworkers have prepared dendrimers (P62,
P63, P64) with several 2,7-dibromo-fluorene monomers contain-
ing benzyl ether dendrons at the 9-position [81]. They discovered
that there was an apparent optimum size of the dendritic side
groups, which leads to aggregation-free solid state spectra and high
PL quantum efficiencies.

In our work, we have reported firstly the synthesis of a family of
high molecular weight, dendronized poly (fluorene)s carrying
peripheral carbazole functional groups by Suzuki-Miyaura-Schlüter
polycondensation (P65eP67) [82]. The structures were shown in
Fig. 15. The idea in such molecular structural design was to make
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Fig. 20. UVevis absorption and photoluminescence spectra (excited at 360 nm) of
dendronized polymers P76 (PG0$HCl), P77 (PG1$HCl), and P78 (PG2$HCl) in water
(1 mg/mL) from Ref. [86].
the dendritic wedges play the role of not only site isolation but also
hole-transporting. The UVevis absorption and PL spectra were
shown in Fig. 16. The molecular weights, thermal properties, and
the fluorescence quantum yield of P65eP67 in THF and as films are
summarized in Table 1. Such studies showed that these kinds of
dendronized polymers exhibited high quantum efficient yields in
solution and films (mainly for second generation P67), which were
promising blue light-emitting materials.

Planar porphyrin molecules have a tendency to form aggrega-
tion in the solid state, which is a disadvantage when they are used
as light-emitting materials. In our work, we have successfully
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synthesized a family of red light-emitting dendronized porphyrin
polymers (P68eP71) [83] by Sonogashira coupling of dendritic
macromonomers and porphyrin monomers as show in Fig. 17. The
higher generation dendritic wedges of Fréchet-type dendrons
(higher than 2) can not only effectively wrap the polymer back-
bones and reduce their aggregation but also provide good solubility
for the conjugated porphyrin polymers serving as red light-emit-
ting materials. As shown in Fig. 18, all the dendronized polymers
P68eP71 exhibited an emission peak at about 605e611 nm and
a shoulder at 649e652 nm. The photoluminescence quantumyields
of dendronized polymers with ZnTPP as standard (F ¼ 0.033) in
toluene solutions (excitated at 425 nm) were 0.048, 0.047, 0.043,
and 0.034 for P68eP71, respectively.

Continuously, we further synthesized a series of dendronized
porphyrin polymers P72eP75 [84] up to fourth generation P75 by
Suzuki-Miyaura-Schlüter polycondensation. All polymers exhibited
an intense red emission peak at around 651 nm and a shoulder at
720 nm, which located in the saturated red light region. The pho-
toluminescence quantum yields of P73, P74, and P75 in dilute
toluene solution were measured in comparison to TPP (F ¼ 0.11) to
be 0.15, 0.16 and 0.17, respectively, higher than many other
porphyrin derivatives. Such results indicated that the higher
generation dendronized structure could significantly reduce the
aggregation of planar porphyrin chromophores and the quantum
yields of the polymers increased with the increasing of the gener-
ation of dendrons.

As known, fluorene-based polyelectrolytes often show photo-
luminescence quantum efficiencies lower than those of typical
fluorene-based polymers in organic solvents [85]. This is mainly
due to the aggregation of water-soluble conjugated polymer chains
in aqueous media. In our work, we incorporated peripheral charged
amino groups into a series of cationic water-soluble dendronized
polyfluorenes (P76, P77, P78) as shown in Fig. 19 [86]. The
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introduction of lateral dendrons, as expected, should not only
provide the conjugated polymers with good solubility in water
solution through the charged amino groups, but also reduce the
aggregation of polymers through the “site isolation” effect of den-
drons. The UVevis absorption and photoluminescence spectra
(excited at 360 nm) of P76, P77, and P78 in water (1 mg/mL) were
shown in Fig. 20. The photoluminescence quantum yields of
dendronized polymers in water increased from 0.17 for zero
generation P76 to 0.85 for first generation P77 and further to 0.94
for second generation P78 with quinine sulfate (F ¼ 0.55) as
standard. The extremely high photoluminescence quantum effi-
ciency of the second generation water-soluble dendronized poly-
fluorene P78 indicated higher generationwith lateral dendrons can
effectively prevent polyfluorene chains from aggregation in water
solution; the aggregation of polyfluorene chains will quench their
fluorescence and result in lower quantum yield.

More recently, Pei et al. have reported a solution-processible
fluorescent p-conjugated blue dendrimer P79 as color-stable deep-
blue-emitting OLEDs with high efficiency [87,88]. The structure is
shown in Fig. 21. The saturated blue OLED based on P79 showed the
highest luminance efficiency of 5.3 cd/A and 6.6% (external
quantum efficiency) at a current density of 10.7 mA/cm2 with
a luminance of 550 cd/m2, and had CIE coordinates of (0.155, 0.086).
At the maximum luminance around 17,000 cd/m2 and with
a current density of 650 mA/cm2, the CIE coordinates became
(0.156, 0.091), showing impressive color stability. With such high
efficiency at high current density and excellent color stability, the
deep-blue fluorescent dendrimer P79 is promising not only for the
application in full-color flat-panel displays but also for the fabri-
cation of white OLEDs in solid state lighting.
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Peng et al. have successfully designed, synthesized, and char-
acterized a series of new polyfluorenes P80, P81, and P82 with
dendritic functional carbazole and oxazole side chains as shown in
Fig. 22 [89]. The color quality of photoluminescent and electrolu-
minescent emission was improved very much due to less aggre-
gates of main chains of polyfluorenes with the steric hindrance of
dendritic functional carbazole and oxazole units. The electrolumi-
nescent devices based on these copolymers as blue emitters and
host materials were fabricated and evaluated. The results indicated
that these copolymers were promising candidates for both efficient
pure blue emitters and host materials for highly efficient phos-
phorescent PLEDs.
4. Hyperbranched polymers as efficient light-emitting
materials

Hyperbranched polymers have attracted increasing scientific
and industrial attention in recent years due to their unusual
chemical and physical properties such as highly branched and
compact three-dimensional structures, large numbers of terminal
functional groups, and low intrinsic viscosities [90,91]. The highly
branched three-dimensional structure can effectively reduce the
aggregation of polymer chains, endow the polymer with good
solubility in common organic solvents, and make the polymer form
good quality amorphous films [92]. The synthesis of many kinds of
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Table 2
Feed ratios, molecular weights, and polydispersity (PD) of hyperbranched porphy-
rins P94eP97 from Ref. [102].

Polymers Feed ratio (AB3 monomer/C4 monomer) Mn Mw PD

P94 1:0 33400 146,000 4.3
P95 8:1 10600 17,000 1.6
P96 12:1 11200 173,000 1.5
P97 18:1 14300 25,000 1.8
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hyperbranched polymers has been well documented in several
review articles [93]. An elegant synthesis of porphyrin based
hyperbranched polymers was achieved by Hecht and Fréchet
through an A2 þ B3 approach [94]. However, there are still limited
examples of hyperbranched polymers used as blue and red light-
emitting materials.
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Lin and his coworker have developed a series of novel kinked
and hyperbranched carbazole polymers (P83, P84, P85) by the
Suzuki coupling polycondensation reaction as shown in Fig. 23 [95].
They introduced disorder packing into the copolymer backbones to
decrease the aggregation phenomena. All of these polymers
exhibited high blue light quantum efficiencies in solution and solid
states and possessed excellent thermal stability by annealing
studies under air. Liu and Qin have prepared hyperbranched light-
emitting polymers (P86, P87) by copolymerization of tribromoaryl
moieties and 9,9-dihexylfluorene-2,7- bis(trimethyleneborate)
using “A2þB3” approach based on Suzuki-Miyaura-Schlüter poly-
condensation reaction [96]. P86 and P87 emit strong blue light
upon excitation.

Peng et al. prepared a series of hyperbranched, polyfluorenes
possessing triarylpyrazoline cores based on the Suzuki coupling
protocol [97] as shown in Fig. 24. The device configuration based
P88 exhibited good EL properties, which emitted pure blue light
with a turn-on voltage of 5.3 V and exhibited an EL efficiency of
nearly 2%.
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The idea of our work is to introduce branching units into the
conjugated polymers to make polymers be of hyperbranched
structure, which helps to depress the aggregation of conjugated
polymer chains. Directed by these ideas, we have developed an
“AB2 þ AB” approach based on Suzuki-Miyaura-Schlüter poly-
condensation (SPC) to obtained hyperbranched polymer P89eP91
as shown in Fig. 25 [98]. Three polymers P89, P90, and P91 were
obtained by taking monomer 1 and monomer 2 in molar ratios of
100:5, 100: 15, and 100:40, respectively. Polymer P89eP91
exhibited good solubility in common organic solvents and very
good color stability. After thermal treatment of the solid films at
200 �C for 30 min in air, P89 film exhibits the low energy long
wavelength emission band at around 525 nm in green-blue region,
which might be due to the aggregation and formed excimers of
polymer chains. However, for P91 film, no green-blue band emis-
sion was observed after thermal treatment of the solid films at
200 �C for 30 min in air as shown in Fig. 26. This result indicated
that hyperbranched structure could prevent the aggregation and
crystallization of the rigid polymer chains. Furthermore, these
hyperbranched conjugated polymers with more benzene cross-
points show higher EL efficiency due to the effective exciton
confinement and the reduction of intrachain or interchain exciton
annihilation as shown in Fig. 27 [99]. It is very interesting to note
that this is the first report of hyperbranched polymers being used as
blue light-emitting materials.

Triphenylamine (TPA) based polymers have been used as hole-
transporting materials for light-emitting diode. TPA-based hyper-
branched polymers have been prepared by Tanaka and Wang et al.
via Grignard and Negishi coupling reactions. The AB2 monomers
used above are moisture and air sensitive, and used as prepared
without further characterization and checking their purities [100].
The drawback obviously limited the application scope of these
methods. As shown in Fig. 28, we have developed amore applicable
methodology to prepare hyperbranched TPA polymers (P92 and
P93) [101]. TPA-based AB2 monomers carrying two bromo func-
tional groups and one pinacol protected boronic acid group have
been designed, prepared, and used for Suzuki-Miyaura-Schlüter
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polycondensation to prepare hyperbranched TPA polymers. The
above mentioned AB2 monomers can be purified by flash chroma-
tography on silica gel and fully characterized by standard charac-
terization methods. Prepared TPA-based hyperbranched polymer
P92 has a number average molecular weight of 7300 and weight
average molecular weight of 9800. The introduction of 9,9-dioctyl-
fluorene or its trimer as the core, the solubility of hyperbranched
polymers can be increased and themolecularweight of polymer can
be controlled by the fed ratio of core molecule to AB2 monomer.
Thus, thepolymerizationofAB2monomercarrying twoflexible alkyl
chains afforded high molecular weight of hyperbranched polymer
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P93with anumber averagemolecularweightof 146,000 andweight
average molecular weight of 169,000, which is fully soluble in
common organic solvents and the peripheral bromo functional
groups can be further modified. The photoluminescence quantum
yields of the hyperbranched polymers in toluene solutionwere 0.75
and 0.52 for P92 and P93, respectively, which weremeasured using
a dilute solution of 9,10-diphenylanthracene in toluene (F ¼ 1.0) as
the standard.

We have also developed a highly efficient method to synthesize
a novel kind of hyperbranched porphyrin arrays (P94, P95) [102] by
one-pot Suzuki-Miyaura-Schlüter polycondensations of AB3
Br
r

Br
r

B
O

O

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

SPC

d polymers R=n-C8H17

06: X =
N HN

NNH

R

R

TMS

R
R

TMS

RR
TMS

107: X = N N
NN

R

R

TMS

R
R

TMS

RR
TMSZn

P101eP107 from Ref. [112].



Table 3
Absorption, fluorescence maxima (lmax), and the photoluminescence quantum
efficiency (F) of P102eP107 from Ref. [112].

Polymer Absorption (lmax/nm) Fluorescence (lmax/nm) F

THF Toluene Film THF Toluene Film Toluene

P102 384 384 385 436 430 438 0.51
P103 384 384 381 440 431 444 0.45
P104 393 395 392 460 448 483 0.41
P105 398 399 395 490 466 500 0.63
P106 427 429 434 659 659 663 0.16a

P107 433 438 e 616 620 e 0.03b

a Tetraphenylporphyrin in the toluene (F ¼ 0.11) as the standard.
b Zn-Tetraphenylporphyrin in the toluene (F ¼ 0.03) as the standard.
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monomers (P94) or AB3 þ C4 monomers (P95eP97) as shown in
Fig. 29. We selected fluorene-type porphyrins as monomers, which
not only can form conjugated connections, but also the octyl chains
on fluorene units can help to increase their solubility. The obtained
hyperbranched porphyrin polymers are of high molecular weight
and good solubility in common organic solvents. The use of tet-
raiodo substituted porphyrin, C4 monomer, as a core molecule in
the polymerization of AB3 monomer, the molecular weight and
solubility can be controlled by the fed ratio of the twomonomers as
shown in Table 2. The emission spectra of TPP, AB3 monomer, and
the polymers in THF solution are shown in Fig. 30. All polymers
exhibited an intense red emission peak at around 655 nm and
a shoulder at 713 nm. The photoluminescence quantum yields of
the hyperbranched porphyrins in toluene were measured to be
around 0.15 in comparison to TPP (F ¼ 0.11).

As shown in Fig. 31, we have developed a new synthetic strategy
of preparing hyperbranched conjugated polymers (P98, P99, P100)
with a controllable conjugation length by using monodisperse
conjugated oligomers as the AB2 monomers [103]. These polymers
have not only controllable conjugation length, but also the struc-
tural feature of hyperbranched polymers. The photoluminescent
spectra of P98eP100 and L-Polymer in solutions and films are
shown in Fig. 32. The emission maxima bathochromically shifted
with the increasing the conjugation length from P98 to L-Polymer.
In solid films, P98eP100 exhibited the emission peaks were much
narrower than L-polymer. Such broad peaks of L-polymer were
probably due to the formation of aggregation for the linear conju-
gated polymer chains in solid state. However, the hyperbranched
structures of P98eP100 could reduce the aggregation of conjugated
polymer chains in solid state to some extent. The photo-
luminescence quantum yields of P98eP100 in dilute toluene
increased from P98 to P100 with the increasing of the conjugation
length. These results clearly showed that optical properties of the
hyperbranched conjugated polymers can be precisely controlled
through controlling their conjugation length.

Recently, modification of the large number of endgroups of
hyperbranchedpolymershasattractedmore andmore interest in the
research area of hyperbranched polymers [104e110]. As shown in
Fig. 33,wehave successfullypreparedhyperbranchedpolymer-cored
star polymers P101eP107 by Suzuki-Miyaura-Schlüter poly-
condensationofAB-typemonomer in thepresenceofhyperbranched
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Fig. 34. Structure of polymer P108 from Ref. [117].
polymers with peripheral bromo functional groups. Hyperbranched
polymer-cored star polymers P101 and P102 exhibited very good
color stability without significant green-blue emission even after
annealing at 200 �C for 2.5 h in air [111]. This is due to the three-
dimensional hyperbranched structure could effectively suppress the
aggregation of the peripheral linear conjugated polyfluorene chains.
The large number of peripheral bromo terminal groups of hyper-
branched polymers can also be modified by Suzuki-Miyaura cross-
coupling reaction to attach different dye molecules to tune their
emitting color [111,112] as shown in Fig. 33. As confirmed by their
absorption and emission spectra shown inTable 3, the aggregation of
the peripheral dyes can also be effectively suppressed by the hyper-
branched structures.

More recently, Cao and coworkers [113] have synthesized
a novel series of soluble hyperbranched interrupted p-conjugated
polymers (HICPs) based on complicated 9,9-diarylfluorenes
(CDAFs) branching core and end-capped with high carrier mobility
pyrene moieties via Suzuki coupling condensation (the polymers
structures are shown in Ref [113]). The aggregation or excimer
formation was effectively suppressed by the introduction of the
twisted tree-dimensional structure. No obvious low energy green
emission band at 520 nm was observed under extreme thermal
annealing conditions in air at 200 �C for 12 h. The CDAF1 device
shows stable blue emission with the peak at 422 and 447 nm. The
Commission International d’Eclairage (CIE) 1931 coordinates is
(0.18, 0.16) and the brightness reaches 1051 cd/m2 at 15.7 V.

5. Spirobifluorene-based light-emitting materials

Compared with the huge amounts of publications on fluorene
polymers and copolymers, less attention was paid to spirobi-
fluorene-based polymers. Spiro-annulated molecules utilize the
spiro-bridge to connect two conjugated moieties. The tetrahedral
bonding atom at the center of a spiro-annulated molecule main-
tains a 90� angle between the connected conjugated moieties via
35 00 45 00 550 4 0 5 0 600

PL
 I

Wavelength (nm)

Fig. 36. Photoluminescent spectra of P109 and PFO in solid films before and after
thermal annealing at 200 �C for different times (0.5 h for PFO and 3 h for P109) from
Ref. [119].
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a sp3-hybridized carbon atom as a spiro center [114]. This structural
feature can minimize the close packing of spiro-annulated mole-
cules in the solid state. Furthermore, the spiro-concept can prevent
the photo/thermal oxidation of the 9-position of the fluorene unit
to form the undesired ketonic defect. Therefore, the unusual rigid
three-dimensional structure makes spirobifluorene an ideal
building block in construction of stable blue light-emitting and
plastic laser materials [115]. In 2006, Salbeck made a significant
review and presented a comprehensive overview of basic physi-
cochemical properties of spirobifluorene containing compounds in
solution and in solid state and their practical applications in
optoelectronics [116]. However, spirobifluorene-based polymers
are not included into this review. Here, we will concentrate on the
synthesis and photophysical properties of spirobifluorene-based
polymers and spiro-bridged ladder-type oligomers and polymers.

Yu et al. have reported the synthesis and characterization of
soluble spirobifluorene and fluorene alternating copolymers (P108)
as blue light-emitting materials as shown in Fig. 34 [117]. Copoly-
mer P108 exhibits a more stable and narrower blue emission peak
with a smaller tail at longer wavelengths in comparison with
conventional alkyl substituted polyfluorenes. Lee et al. have
prepared spirobifluorene polymers using Yamamoto coupling
400 450 500 550 600

0

100

200

300

400

500

PL
 in

te
ns

ity
 (a

u)

Wavelength (nm)

 0 h
 0.5 h
 1.5 h
 2.5 h

Fig. 38. The normalized film photoluminescence spectra of spiro-bridged ladder-type
P112 before and after annealing at 200 �C in air from Ref. [132].
reactions [118]. However, the color stability of the spirobifluorene
polymer upon annealing in air was not investigated.

In our work, we have synthesized P109 through AB-type
monomer route via palladium-catalyzed Suzuki-Miyaura-Schlüter
polycondensation as shown in Fig. 35 [119]. P109 exhibited
extremely good luminescent stability, no green emission was
observed after the polymer film was annealed at 200 �C for 3 h in
air as shown in Fig. 36. The photoluminescence quantum yields of
P109 in toluene were measured to be 0.91 with 9,10-diphenylan-
thracene as a reference standard (cyclohexane solution, F ¼ 0.9).

The ladder-type oligomers and polymers possess a rigid
coplanar structure, which enhances the conjugation, carrier
mobility, and luminescence intensity [120e128]. The synthesis of
ladder-type oligo-p-phenylenes and the investigation of their
photophysical properties have been reported by Scherf and Müllen
et al. [120e128]. These ladder-type poly-p-phenylenes (LPPP)
exhibited blue emissionwith high fluorescence quantum efficiency.
However, similar to polyfluorenes, the ketonic defects also impeded
the practical application of ladder-type poly-p-phenylenes
[129e131]. The structural perfection indeed plays a very important
role in determining the film electro-optic properties of the ladder-
type poly (p-phenylene)s.

In our work, we have synthesized a set of spiro-bridged ladder-
type oligomers by Suzuki-Miyaura cross-coupling, oxidation and
BF3$ether-catalyzed cyclization reactions as shown in Fig. 37 [132].
Oligomers P110eP113 possesses unique three-dimensional
conformation and exhibited intensive emission with a very small
Stokes shift. Such unique three-dimensional conformation prevents
C8H17O C8H17O
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Fig. 39. Structure of polymer P114 from Ref. [133].
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planar ladder polymer backbone from aggregation in solid film and
displayed very good color stability. With P112 as an example, no
evident photoluminescence spectral change was found after 2.5 h
of heating the film at 200 �C in air as shown in Fig. 38.

Recently, we reported a novel route to synthesize spiro-bridged
ladder-type polymer P114 as shown in Fig. 39 [133]. Spiro-bridged
ladder-type polymer P114 possessed good structural perfection,
exhibited excellent thermal and color stability, and was free of low
energy ketonic defects. The normalized UVevisible absorption and
photoluminescence spectra of P114 in dilute chloroform solution
are shown in Fig. 40a. The studies indicated no obvious shift of the
UV and the PL spectra on going from solution to film and a very
small Stokes shift of 2 nmwas observed, which reflects that P114 is
extremely rigid. However, unlike the published results of Me-LPF
[130,131], no low energy green emission was observed even after
the film of P114 was annealed at 110 �C for 24 h in air as shown in
Fig. 40b. Meanwhile, a single-layer light-emitting diode of the type
ITO/PEDOT/ladder-polymer P114/LiF/Al was fabricated to investi-
gate the electroluminescence property of the P114 as shown in
Fig. 41. The EL spectrum was almost identical to the PL one,
indicating that there was no ketonic defect on polymer P114. Spiro-
bridged ladder-type polymer P114 is the first ladder-type poly-
p-phenylenes (LPPP) that exhibits excellent thermal and optical
stability.

More recently, Lin and coworkers [134] synthesized a series of
conjugated blue light-emitting copolymers (the structures were
shown in Ref. [134]), comprised different ratios of electron-with-
drawing segments (spirobifluorene substituted with cyanophenyl
groups) and electron-donating segments (tricarbazole-triphenyl-
amines). OLED device evaluation indicated that all the polymers
emitted sky blue to deep-blue light when the polymers were used
as the emissive layers in the devices with a configuration of ITO/
PEDOT:PSS/polymers/CsF/Ca/Al.
Fig. 41. Electroluminescence of an ITO/PEDOT/P114/LiF/Al device from Ref. [133].
6. Conclusion

In recent years, three-dimensional conjugated macromolecules
such as dendrimers, hyperbranched and star polymers, spirobi-
fluorene polymers, and spiro-bridged ladder-type oligomers and
polymers have been developed as promising light-emitting mate-
rials in our group. The rigid three-dimensional structures show
superiority to the corresponding linear structures, which can
effectively suppress the aggregation of conjugated polymer chains
and reduce the self-quenching of their luminescence.

In this feature article, special attention is paid to the recent
progress in chemical structure design of three-dimensional
conjugated macromolecules as the light-emitting materials and
highlight on our studies in detail. These investigations provide us
with an important way to improve the OLED efficiency through
the modification of the chemical structure. Challenges remain
using these three-dimensional conjugated macromolecules to
achieve pure red and blue-light-emitting applications. In partic-
ular, the structures and components of three-dimensional conju-
gated macromolecules need to be addressed and optimized to
overcome the specific factors, for example, device performance.
Since intensive research efforts are ongoing to develop new
material designs and device architectures, these advances in the
design and engineering of three-dimensional conjugated macro-
molecules will open new avenues to flat-panel displays and
futuristic applications.
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